SiC MOSFET/Si IGBT在功率器件中的巨大优势

2019-01-03 09:03:43

SiC MOSFET/Si IGBT在功率器件中的巨大优势



运输系统、可再生能源及储能系统正在给SiC MOSFET的安全、高效运行带来巨大挑战。能量变换设备与以往相比,具有更轻、更安全、更为可靠的特点,这得益于功率半导体器件的进步,尤其是采用最先进技术的Si IGBT和SiC MOSFET等器件。

 
在过去的20年中,IGBT性能取得了巨大的进步,这主要是通过引入用于降低损耗的非穿通(NPT)技术和用于降低栅极电荷的垂直栅极来实现的。然而在这段时间里,作为关键技术的栅极驱动器仍然是一个技术壁垒,虽然运行过程很简单,即将+ Vge和-Vge分别通过导通电阻和关断电阻施加在器件的栅极与发射极之间。为了解决这一难题,罗姆推出了其第3代SiC MOSFET产品,其不同于前代的平面栅结构,这是一个采用沟槽栅结构的SiC MOSFET器件。这种新结构消除了平面栅结构中内部寄生JFET上的电阻,使单位面积的阻值降低了一半。
 
4
▲双沟槽结构与传统沟槽结构的电场仿真对比。
 
未来市场
 
碳化硅(SiC)MOSFET的优异技术功能必须搭配适合的成本定位、系统相容性功能、近似于硅的FIT率以及量产能力,才足以成为主流产品。电力系统制造商需在实际商业条件下符合所有上述多项要素,以开创功率转换的新局面,尤其是以能源效率以及「以更少投入获得更多产出」为目标的案例。
 
在未来,将有越来越多的功率电子应用无法仅倚赖硅(Si)装置满足目标需求。由于硅装置的高动态损耗,因此藉由硅装置提高功率密度、减少电路板空间、降低元件数量及系统成本,同时提高功率转换效能,即成为一个相互矛盾的挑战。为解决此问题,工程师们逐渐开始采用以碳化硅材料为基础的功率半导体来部署解决方案。
 
在这十多年来,诸如太阳能变频器中的MPP追踪或开关式电源供应器中的功率因数校正等应用中,使用Si IGBT加上SiC二极体或具有SiC二极体的超接面Si MOSFET已成为最先进的解决方案,可实现高转换效率及高可靠度的系统。市场报告甚至强调SiC二极体正进入生产率的平原期。SiC技术中的量产技术、生产品质监控以及具有优异FIT率的现场追踪记录,为采用包含SiC MOSFET之产品策略奠定了下一步基础。
 

5

 

SiC MOSFET/Si IGBT 效能大有优势
 
SiC半导体材料中的晶体管功能,为整体电力供应链(从能源产生、传输及分配给消费者)的能源效率(以较少能源获得更多能源)提供了更大的潜力。
 
让我们仔细研究一下SiC MOSFET与Si IGBT的效能优势。下图显示了先进的硅解决方案范例:如果目标为高效率与高功率密度,具有650V与1200V Si IGBT的3-Level T类拓扑的一个相位脚通常会用于三相系统,例如光电变频器与UPS。采用此种解决方案,效率最高可达到20~25kHz的切换频率。由于装置电容较低、部分负载导通损耗较低,以及没有关断尾电流,因此1200V SiC MOSFET的电流损耗比1200V Si IGBT低约80%。在外部切换位置使用1200V SiC MOSFET可大幅提升效率,并在指定的框架尺寸中达到更高的输出功率。
 
6
先进的硅解决方案范例
 
进一步提高切换频率会导致硅基解决方案效率与最大输出功率迅速降低,但SiC MOSFET的低切换损耗不会有此问题。透过此范例的证明,工作频率高达72kHz的三倍仍带来比24kHz运作之硅解决方案更高的效率。因此可缩减被动元件实体尺寸、减少冷却作业,并达到更低的系统重量与成本。
 
另一个三相电力转换范例是电动车的充电基础设施。1200V SiC MOSFET可为DC-DC转换级建构一个LLC全桥级,其中典型的硅解决方案倚赖650V Si超接面MOSFET,需要两个串联的LLC全桥来支援800V的DC链路。而四组SiC MOSFET加上驱动器IC即可取代八组Si超接面MOSFET加上驱动器IC,如图2所示。除了零件数量减少及电路板空间缩减之外,还可以使效率达到最佳化。在每个导通状态下,相较于Si解决方案中的四个切换位置,SiC MOSFET解决方案仅打开两个切换位置。在快速电池充电中使用SiC MOSFET,可实现高效率的充电周期。
 
由于动态损耗比1200V Si级低一个量级,因此SiC MOSFET亦可藉由提高效能,为传统的简单拓扑提供重新使用的机会。在图3中,将使用1200V SiC MOSFET的传统2-Level解决方案与先前提及的先进3-Level硅解决方案进行比较。2-Level拓扑结构的优点是控制方案非常简单,且减少50%的零件数量。此种解决方案可用于光电与UPS变频器,以及驱动系统、电池充电及能源储存解决方案中具有双向性的主动式前端。如图3所示,尽管切换频率从24kHz提高至48kHz,但在2-Level SiC MOSFET解决方案的高负载条件下,效率提高了0.3~0.4%,这的确令人惊奇,因为其切换电压较3 -Level运作高出两倍(800V比400V)。
 
7
使用1200V SiC MOSFET的传统2-Level解决方案与先进3-Level硅解决方案比较
 
然而,以SiC MOSFET进行设计也存在着挑战。设计人员必须考量SiC MOSFET的切换瞬变。相较于经常可在1200V Si IGBT中见到的5~20V/ns,50V/ns或更高的dv/dt并不罕见。因此,电路板层级上的寄生耦合电容将导致过多的能源损耗。对于以更简单的2-Level解决方案取代3-Level Si IGBT解决方案的情况而言,如果切换电压与频率皆加倍,则寄生耦合电容将产生高出八倍的能源损耗。图3显示当SiC MOSFET在标准IGBT 2-Level解决方案中随插即用时的原始效率线,而下一个效率线则显示有关汲极-源极寄生电路板电容的PCB谨慎设计能如何减少损耗。当切换频率增加时,应考量的第二个主题涉及电感器的磁芯损耗。
 
由于涟波电流及其相应的损耗在整个负载范围内维持恒定,藉由改变芯材料来改善磁芯损耗主要会影响部分负载效率。相较于3-Level Si IGBT解决方案,这两项改善最终将带来高于98.5%的理想效率线。这显示SiC MOSFET主要并非Si IGBT的随插即用选项,而且需要大量的设计作业才能将效能提升到更高水准。